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ABSTRACT: 

In this paper, we consider the problem of estimating a parameter a that can be 
expressed as a nonlinear function of sample means. We develop a jackknife estimator for 
a that is appropriate to computational settings in which the total computer budget to be 
used is constrained. Despite the fact that the jackknifed observations are not i.i .d., we 
are able to show that our jackknife estimator reduces bias without increasing asymptotic 
variance. This makes the estimator particularly suitable for small sample applications. 
Because a special case of this estimator problem is that of estimating a ratio of two means, 
the results in this paper are pertinent to regenerative steady-state simulations. 

KEYWORDS: Bias, jackknife, regenerative simulation 

1. INTRODUCTION 

Consider the problem of estimating, via simulation, the parameter a = g(J.L) where 
g : Rd -+ R is a (possibly) nonlinear function and J.L is expressible as the mean of an Rd­
valued random vector X. This estimation problem arises in certain terminating simulation 
settings. as well as in steady-state regenerative simulations (see Section 2 for examples of 
specific applications). This paper is concerned with the problem of estimating a when 
a budget constraint t , representing the maximum amount of computer time to be used. 
is imposed on the simulation. Two major statistical difficulties arise in this estimation 
setting. Firstly, the number of replications N(t) of the r.v. X generated within the budget 
constraint t is random. Consequently, (deterministic) fixed sample size theory does not 
apply to this class of estimation problems. The second difficulty is that the nonlinearity in 
the function g produces bias in the estimation of a. A standard statistical technique used 
to deal with bias that emanates from nonlinearities of this kind is to jackknife the estimator 
(see, for example, MILLER (1974) and IGLEHART (1975)). However, the jackknife litera­
ture typically requires that the observations being jackknifed be i.i.d. Unfortunately, when 
a budget constraint is imposed, the observations are clearly no longer independent. The 
major contribution of this paper is to show that the dependence induced by the presence 
of the budget constraint does not destroy the bias- reducing properties of the jackknife. As 
indicated earlier, the jackknifed estimator that we obtain here has important implications 
for steady-state regenerative simulation. In particular, the estimator obtained here has 
the same bias-reducing properties as the regenerative low-bias estimator introduced by 
MEKETOK and HEIDELBERGER (1982). 

This paper is organized as follows. In Section 2, we precisely describe the estimation 
problem and give examples of various applications settings. We then proceed to describe 
the major results of this paper. Section 3 discusses the empirical behaviour of our budget­
constrained jackknife. We defer all proofs to Section 4. 
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2. D ESCRIPTION OF MAIN RESULTS 

Suppose that X is an Rd-valued random vector with finite mean JL As stated in the 
Introduction, our goal in this paper is to estimate a = g(J.L), subject to a budget constraint 
on the total amount t of computer time to be used. Throughout this paper, we assume 
that g : Rd ~ R has continuous second partial derivatives in some open neighborhood for 
J.l · This type of estimation problem arises in several different problem settings. 

EXAMPLE 1. Given a stochastic system Y , we may be interested in the performance 
of the system over some (finite) time horizon T (T may be deterministic or it may be 
a stopping t ime with respect to Y; see p. 322 of CHUNG (1974) for a definition of 
stopping time). Let Z be a real-valued performance measure that depends on Y over the 
above time horizon, so that Z can be represented as Z = f (Y(s ): 0 ~ s ~ T ). Estimation 
of both the mean and variance of the performance measure Z are special cases of the 
estimation problem considered in this paper. To incorporate the estimation of a = EZ 
into our framework , we set X= Z and g(x) = x. For the variance, we let X= (Z 2 , Z ) 
and g( x1 , x 2 ) = x 1 - x~. Note that in the case of the variance, g is a nonlinear mapping. 

EXAMPLE 2. Suppose that Y is a real-valued non-delayed regenerative process and 
that Z is the ,8-discounted cost associated with Y, namely 

Z = 100 

exp( - ,Bs)Y(s) ds. 

It is shown in FOX and GLY~~ (1989) that a= EZ can be re- expressed as a= g(EX ). 
where 

X= (1" exp( - ,Bs)Y(s) ds, exp( -,Bry)), 

TJ is the first positive regeneration time of Y, and g( x1 , x 2 ) = x 1 (1- x 2 ) -
1

. The advantage 
of this alternative representation is that the random vector X can be generated in finite 
time, whereas Z typically can not. It is further shown in FOX and GLY:\":\" (1989) that 
the expected ,8-discounted cost associated with a delayed regenerative process can also be 
expressed in the form a = g(EX), although the precise nature of X and g is then more 
complicated. 

EXAMPLE 3. Let Y be a non-delayed real-valued regenerative process and suppose 
that 77 is the first positive regeneration time of Y. Regenerative process theory (see, for 
example, SMITH (1955)) shows that the steady-state mean a of the process Y can be 
represented as the ratio 

The above r a tio estimation problem can be incorporated into our set-up by letting 

and putting g(x 1 ,x2 ) = xdx2 . T hus , we conclude that the problem of estimating the 
steady-state mean of a regenerative stochastic process is a special case of the estimation 
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problem considered in this paper. The observation that steady-state estimation for regen­
erati \·e processes is a special case of ratio estimation lies at the heart of the regenerative 
method for steady- state simulation output analysis (see CRA:\E and LE);10I~E (1977) 
for a more complete description of the method). 

EXA~1PLE 4. Suppose that rather than estimating the steady-state mean of a regener­
ative stochastic process, we now wish to estimate the steady-state variance. To be more 
precise, suppose that Y is a real-valued non-delayed regenerative process. Then, under 
suitable regularity conditions on Y, there exists a r.v. y• such that Y(t) => y• as t ~ oo; 
F· has the steady-state distribution associated with the regenerative process Y. The prob­
lem of estimating a = EY• was discussed in Example 3. It turns out that the regenerative 
structure of Y can also be fruitful exploited to estimate a = var y•. More specifically, 
a= g(EX). where 

X= (1" Y2 (s) ds, 1" Y(s) ds. 11) , 

17 is the first positi\·e regenerative time of Y, and g(x1.x2,x3) = (xtfx3)- (x2fx4)2. The 
problem of estimating a = var y•, when no budget constraint is present, is discussed in 
GLY:\:\ and IGLEHART (1986). 

Returning to the estimation problem at hand. our estimators are obtained by gen­
erating i.i.d. copies X 1 ,X2 , ... of the r.v. X. Suppose that T1 is the computer time 
required to generate Xi. \Ve assume throughout this paper that the sequence of pairs 
{(Xn, Tn): n ~ 1} are i.i.d. However, we permit Xn and Tn to be dependent r.v.'s. Indeed. 
in most applications, Xn and Tn will be strongly correlated. 

n 
Given a budget constraint t, let N(t) = max{n ~ 0 : 2: T 1 ~ t} be the number of 

t=l 
observations completed by time t. The classical estimator for a is then defined by 

N( t) 

{ 

g(X(t)); S (t) ~ 1 
a(t) = 

0; .V(t) = 0, 

where X(t) = N(t)-l E xi. We adopt the convention that X (t) = 0 if N(t) = 0. This 
i=l 

estimator. while enjoying reasonable large-sample behavior, suffers from small-sample bias 
that can substantially degrade the performance of the estimator. To precisely describe the 
bias characteristics of a(t) requires some control on the growth of g. 

DEFI~ITIQ::-;. Let II · II be the Euclidian norm on Rd. We say that g is polynomially 
dominated to degree r (r ~ 0) if there exists constants A and B such that 

lg(x)l ~A+ Bllx - Jilr 

for all x E C, where Cis the convex hull of the support of the distribution of X (seep. 31 
of CHt.::\G (1974) for a definition of the support of an Rd-valued r.v.). 
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To obtain some feel for this condition, let us note that if g is bounded, then g is 
polynomially dominated to degree 0. This also occurs when the X;'s lie almost surely 
in some set on which g is bounded. This situation is illustrated by Example 3 when 
11-(s) i $ }v'f, in which case ia(t)l $ M. Finally, wenote that if all the partial derivatives 

of g of order r are globally bounded (i.e. sup { ;
1 

fY ict g( x) : x E Rd} < oo for all 
O:z;loooOXd 

collections ( i 1 , ... , id) such that i 1 + ... + id = r ), then g is polynomially dominated to 
degree r. For 1 $ i, j $ d, let 

where Xk = (Xk(1), ... , Xk(d)), J.L = (J.L(1), .. . , J.L(d)). Set A= 1/ Erk. 

We are now ready to state our small-sample bias expansion for a(t). It is a general­
ization (to unbounded g) of Theorem 4.3 of GLYNN and HEIDELBERGER (1990). 

THEOREM 1. Suppose that g is polynomially dominated to degree r( r ;::: 0) and 0 < A < 
oo. Let p = max(2, r ). If there exists 8 > 0 such that Ell X II 2

P+l+
6 < oo and Er2

P+6 < oo, 

then 

as t -+ oo, where 

In view of the importance of steady-state simulation, we provide the following corollary. 

COROLLARY 1. Consider Example 3. If either: 

i) sup{IY(s , w)l : s;::: 0, wE S1} < oo, EryH6 < oo, and Er4+6 < oo 

or 
ii) there exists E > 0 such that P{ry;::: E}, EIIXII5

+6 < oo, and Er4+
6 < oo 

then 

Ea(t) =a+ bft + o(1/t), 

where 

This generalizes a bias expression due to MEKETON and HEIDELBERGER (1983). 
Their discussion assumes that "' = r or, equivalently, that the amount of computer time 
expended to generate t units of simulated time is precisely equal tot. By contrast, we are 
not assuming here that computer time and simulated time are identical. 
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In addition to the bias, the quality of an estimator is also largely determined by its 
asymptotic variability. The next result characterizes the central limit behavior of a:(t); its 
proof appears in GLY:\N and HEIDELBERGER (1990) as part of Theorem 4.1. 

THEORE~l 2. Suppose that 0 < ..\ < oo and that EIIXII2 < oo. Then, 

l t 2 (a(t)- a)* O'N(O, 1) 

d d 

2 -1 "'"' ag ( ) ag ( ) as t-+ oo, where 0' = ..\ ~ ~. -a J1. -a J1. ci]• 
X 1 X 1 •=1 J=l 

Assuming that a(t) is appropriately uniformly integrable, Theorem 2 implies that var 
a(t) "'0'2 jt as t-+ oo (when 0'

2 > 0). 

Our goal is now to produce an estimator that has the same asymptotic variability as 
a(t), but has improved small-sample bias behavior. It is well known that one effectiYe 
technique for dealing with bias associated with nonlinear functions of sample means of 
i.i.d. r.v.'s is to jackknife (see :MILLER (1974) and GRAY and SCHUCA:\Y (19i2) for 
further details). Unfortunately, the observations XI, x2, ... 'XN(t) generated within the 
budget constraint t are not independent (and are not identically distributed as a function 
oft). In particular, the sum of the N(t) r,'s is constrained to be less than or equal tot . 
and hence the Ti 's (and consequently the Xi's ) are dependent. ~evertheless, we will show 
that the dependency induced by the budget constraint is mild enough that the jackknife 
estimator continues to effectively reduce bias. 

Let 
1 

N( t) 

"""" X · ; N(t) ~ 2 N(t) -1 .~ 1 

0 

J = 1 
j # i 

; .N(t) :S 1. 

; N(t) ~ 2 

{ 

g (X,(t)) 
O'i(t) = 

0 ;N(t):S1 

ai(t) = N(t)a(t)- (N(t) - 1)ai(t) 

{ 

1 
N(t) 

( ) N( ) 
L ai(t) ; N(t) ~ 1 

a; t = t . 
•=1 

0 ; N(t) = 0. 

Our next theorem asserts that the jackknife estimator a;(t) does indeed effectively 
reduce the small-sample bias. 

THEOREM 3. Suppose that g is polynomially dominated to degree r(r ~ 0) and 0 < 
..\ < oo. If there exists 8 > 0 such that Eexp(8IIX1 11) < oo and Eexp(8r1 ) < oo, then 

Ea(t ) =a+ o(1jt) 
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as t ~ oo. 

In particular, Theorem 3 shows that the jackknifed estimator aJ(t) is an effective 
technique for reducing bias in regenerative steady-state simulations (see Example 3). This 
estimator provides a bias reduction that is qualitatively identical to that obtained when 
using the low-bias steady-state estimator proposed by MEKETO~ and HEIDELBERGER 
(1983). We note, however, that in contrast to the estimator proposed there, the budget 
constraint used here is specified in terms of computer time, whereas their estimator's 
budget constraint is determined by simulated time. Of course, a simulation time constraint 
is just a special case of a computer time constraint (just set 1] = T in Example 3). Thus, 
the estimator aJ(t) is a more generally applicable approach to obtaining bias reduction in 
steady-state regenerative simulations. 

Our next goal is to show that the bias reduction obtained by using aJ(t) comes at 
no cost, in terms of additional asymptotic variability. In order to obtain a central limit 
theorem for a 1 (t), we shall need to apply a "random time charge" argument (to pass 
from the discrete time scale of observations, expressed in terms of n, to the continuous 
parameter computer time scale, expressed in terms oft). This basically requires proving a 
functional limit theorem for the jackknife estimator. Unfortunately, we have been unable 
to find such a limit theorem in the literature (although ordinary central limit theorem do 
appear; see, for example, MILLER (1964)). Thus, part i) of our next theorem states a 
.. strong approximation" result for the jackknife estimator aj( n) given by 

n 

aj(n) = 2. :L:)ng(Xn) - (n -1)g(Xin)J, 
n •=1 

n 

where Xn = n-1 L Xj and Xin = l:j = 1 Xj/(n -1). A functional limit theorem for 
]=1 j =I= i 

aj(n) follows easily from the strong approximation result (see CSORGO and REVESZ 
(1981), and is stated as part ii) of Theorem 4. The existence of this functional theorem 
also guarantees that sequential stopping rules, based on jackknifed estimators, are asymp­
totically valid (see GLY~N and WHITT (1989)). Finally, part iii) of Theorem 4 is the 
desired central limit theorem for aJ(t) and follows directly from part ii) as a consequence 
of the "random time change" argument previously mentioned. 

THEOREM 4. Suppose that EIIX1 llP < oo for some p > 3 and that 0 < >. < oo. Then, 

i) There exists a probability space (f2,F,P) supporting a sequence {aj(n)': n ~ 1} and 
an Rd-valued Brownian motion B (with covariance matrix C = (Cij : 1 ~ i, j ~d)) 
such that: 

a) {aj(n)': n ~ 1};g{aj(n): n ~ 1}, where ;g denotes equality in distribution 
b) aj(n)' =a+ \19(fL)B(n)fn + o (n11P-1

) a.s. 

ii) Let Yn(t) = n112(aj(nt)- a) and x(t) = \19(fL)B(t)ft. Then, forE> 0, 

Xn =>X 
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in the Skorohod space D[~: , oo ), where D[~: , oo) is the space of right-continuous func­
t ions with left limits (see ETHIER and KURTZ (1986) for details on this space) . 

iii ) t112 (a 1 (t ) - a ) => CJN(O, 1) as t-+ oo, where CJ
2 is defined as in Theorem 2. 

In the presence of appropriate uniform integrability conditions, we find that part iii) 
of Theorem 4 asserts that var aJ(t) "' CJ2 /t as t -+ oo (provided CJ

2 > 0). Contrasting 
Theorem 4 with Theorem 2, we therefore conclude that aJ(t) possesses the same asymp­
totic variability as does a(t). Since aJ(t ) has superior small-sample bias characteristics, 
as compared to a(t), this suggests that aJ(t ) will often be a superior estimator to a(t) in 
small-sample settings. In the standard i.i .d . ratio estimation context , this type of behavior 
was obserYed empirically by IGLEHART (1975). 
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3. E:\IPIRICAL RESULTS 

In this section, we discuss the results of simulation experiments that compare, em­
pirically, the properties of various estimators including the jackknife. We will restrict our 
attention to the problem of steady-state estimation in two queueing systems: the M/M/1 
queue and a simple queueing network model of a computer system. For the M/M/1 queue 
we consider estimation of the mean steady-state waiting tiem E[W]. We let >. denote the 
arrival rate, Jl. the service rate and define p = >.j J.L to be the traffic intensity. In our exper­
iments we set p = 0.9 which we obtain with >. = 0.9 and J.L = 1.0. With these parameters, 
E[WJ = (1/J.L)p/(1- p) = 9.0. We select the empty and idle state to be our regeneration 
state: the expected number of customers served per regenerative cycle is 1/(1- p) = 10.0. 

The queueing network model is shown in Figure 1. There are five queues, one repre­
senting a CPU and four representing I/0 disk drives. The service discipline at all queues 
is FCFS and all service times are exponentially distributed. Jobs arrive to the system at 
the CPU according to a Poisson process with rat >.. Upon leaving the CPL", the job goes 
to I/ 0 deYice i with probability Pi for i = 1, ... , 4. A job is then routed back to the CPu 
with probability p, or exits the system with probability (1-p). We let 50 denote the mean 
service time of a job at the CPU, and let Si denote the mean service time of a job at the 
I/0 device i. Under these assumptions, the model is a Jackson network having a product 
form solution (see JACKSO~ (1957) or, e.g., Chapter 3 of LAVENBERG (1983)) so that 
steady-state performance measures are easy to compute. We will be interested in estimat­
ing the expected system response time E[R] which is the total expected time that a job 
spends in the system. For our experiments we set>. = 1, Pi = 0.25, p = 0. 75, S0 = 0.2, and 
S, = 0.5 for i = 1, ... , 4. With these parameter settings, E[R] = 8.0 and the steady-state 
utilization of the CPU is 0.8, while the steady-state utilization of each I/0 device is 0.5. 
The probability of an empty system (our regeneration state) is 0.2 x (0.5)4 = 0.0125, which 
since arrivals are Poisson is also the fraction of arrivals to an empty system. Therefore, 
the expected number of arrivals per regenerative cycle is 80( = 1.0125). We used the IBM 
Research Queueing Package (RESQ) to simulate this network (see SAUER, MAC~AIR 
and KUROSE (1984)). 

Let t denote the length of the simulation (in some time unit). We will consider a 
Yariety of estimators, some having "high" bias (i.e., bias of order 1/t), and others having 
"low" bias (i.e., bias of order o(1/t)). Let Tn = r1 + ... + Tn be the time of the n-th 
regeneration and let k(t) denote the number of waiting (response) times completed by 
time t in the M/M/1 queue (queueing network, respectively). Let ak(t) denote the sample 
average of all waiting (response) times completed by time t. For example, in the M/M/1 
queue 

k( t) 

2::: wk 
k=l 

ak<t> = k(t) . 

Since we want to emphasize the dpeendence of the point estimates on the number of cycles 
completed, we will let O'n be the point estimate based on n regenerative cycles. With this 
notation, O:N(t) = a(t), and O'N(t)+l = a:(TN(t)+t) is the point estimate based on N(t) + 1 
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cycles as suggested in MEKETON and HEIDELBERGER (1982). This estimator has 
bias of order o(l/t) provided the steady-state performance measure can be expressed as 
o = E[Xk]/ E[TJk] where TJk = c x Tk for some constant c, i.e. , the length of the k-th cycle in 
simulated time (TJk) is proportional to the length of the k-th cycle in ··CPu" time (rk). By 
"CPu" time we mean generally the time unit that determines the length of the simulation. 
Otherwise it has bias of order 1/t (see GLYNN and HEIDELBERGER (1990) for a more 
complete explanation of this phenomenon). Letting N(t) = max(l,N(t)), then aN(t) is a 
point estimator which is described in GLYNN and HEIDELBERGER (1990): aN(t) has 

t~e same leading term (of order 1/t) in its bias expansion as does CXN(t)· However, using 

.Y(t) obsen·ations results in an unbiased estimate of a simple mean value, whereas using 
either N(t) or N(t) + 1 observations generally results in a biased estimate of a simple 
mean. GLYN~ (1989) has proposed an adjustment to ak(t) which can sometimes be used 
to reduce bias: we let Ok(t) denote this bias adjusted estimator. When it can be applied, 
the bias of Ok(t) is o(lft) as opposed to the order 1/t bias of Ok(t). 

In the )..1/).;1/1 queue simulations. we let t be the number of customers served. In this 
case k(t) = t and T]k = Tk so that CXN(t)+l is a low bias estimator. Also. &k{t) is easy to 
implement in this case. Thus we have three low bias estimators (ak(t)· as(t)+l, and CXJ(t)) 
and three high bias estimation ( etN(t),aN(t) and ak(t)) in this case. For the queueing 
network model, we lett be simulated time. In this case, TJk is the number of jobs processed 
by the network in the k-th cycle and Tk is the length of the k-th cycle in simulated time. 
Since we are no longer assured that TJk = c x Tk , a.v(t)+l has bias of order 1ft. In addition, 
it is not clear that c:ik(t) can be efficiently implemented. Thus in this case. we have only 
one low bias estimator (aJ( t )) and four high bias estimators (a1\'(t)· o.Y(t)' ON(t)+l and 

ak(t))· 

Tables 1 and 2 report the results of simulation experiments for the Yf./M/ 1 queue 
and the queueing netowrk, respectively. For each t, R i.i.d. replications were performed. 
For each estimator, the sample average over the R replications was computed, along with 
an estimate of its standard deviation. These can be used to form confidence intervals 
for the expected value of an estimator. For example, from Table 1, an approximate 90% 
confidence interval for E[aN(t)] for t = 500 is 5.618 ± 1.645 x 0.015. Since E [lVJ = 9.00, 
"·e conclude that fr.N(t) is biased for this value oft. In Table 1, the results are as expected: 
the low (theoretical) bias estimators are generally closer to the steady-stage value than are 
the high bias estimators. The only exception is that a1(t) has more bias than ak(t) for the 
shortest run (t = 500). The jackknife also has higher variance than the other estimators 
for short runs. For intermediate to long runs, the low bias estimators actually do reduce 
bias without a significiant icrease in variance. 

Similar observations can be obtained from Table 2 for the queueing network model. 
Although only the jackknife has provably low bias in this example, CXN(t)+l also performs 
well. 
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4. PROOFS 

Proof of Theorem 1. Fix E. > 0 such that g has bounded third partial derivatives over 
the set {x : llx- J.LII ::; t}. Let I (t) = I(IIX(t) - J.LII > t) and put Ic(t) = 1- I (t). Since 

n 
0 < .A< oo, it follows that N(t)--+ oo a.s. Furthermore, n-1 2:= Xi --+ J.L a.s. by the strong 

i=l 

law of large numbers. Hence, it is evident that X(t)--+ J.L a.s. as t--+ oo, so that I (t) = 0 
fort sufficiently large a.s. We will now show that Eo:(t)I(t ) = o(1jt). 

We first note that since g is polynomially dominated to degree r and X (t ) E C, we 
have that 

( 4.1) E io:(t)I I (t) ::; AEI(t ) + BEIIX(t ) - J.LIIr I (t) . 

I\ow, on {I(t) = 1}, IIX(t)- J.L II/t ~ 1 so 

( 4.2) 

Also, a similar argument shows that 

(4.3) 

By Theorem 4.2 of GLYNN and HEIDELBERGER (1990), {tPI2 II X (t)- J.L IIP : t > t 0 } is 
uniformly integrable for some finite t0 (the argument given there easily extends to non­
integer \·alues of p). Since I (t) --+ 0 a.s., it follows that 

( 4.4) 

as t--+ oo. Combining (4.1)-(4.4), we conclude that E io:(t)II (t) = o(rPI2
) as t--+ oo. 

We now turn to Eo:(t) Ic(t ). However, for that term, we can apply exactly the same 
argument as that used to prove Theorem 4.3 of GLYNN and HEIDELBERGER (1990). 
It shows that Eo:(t) Ic(t) = o: + bjt + o(1/t) as t--+ oo. This clearly completes the proof of 
our result. 

Proof of Theorem 3. For purposes of simplifying our notation, we confine our presen­
tation to the case where d = 1. The general case can be attacked in precisely the same 
way as the scalar case. 

We start by showing that X in is uniformly close to X n, 1 ::; i ::; n (this is a stan­
dard technique in the jackknifing literature; however, the standard references only give 
uniformity in probability, rather than with probability one). We first note that for n ~ 1, 

( 4.5) (n -1)(Xn- X in) 

=nX n - ( n - 1 )X in - X n 
n n 

= LXi- L X; -Xn =Xi -Xn. 
j=l j = 1 

j=f;i 
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Hence, 

(4.6 ) 
- - 1 -

max IXn- Xanl ~ --
1 

max IXi -Xnl 
1$t$n n- 1$t$n 

1 1 -
< -- max IX·I +--IX 1-
- n- 1 1$i$n 

1 n- 1 n 

n 

If EIXIP < oo, it follows that n-1 L: IXiiP-+ EIXIP < oo a.s. as n -+ oo. Consequently, 
i=1 

IXniP/n-+ 0 a.s., from which it is evident that max IX,IPfn-+ 0 a.s. 1.e. max IX,I = 
1<t<n 1$t$n 

o(n11P) a.s. Thus, we conclude that if EIXIP < oo~-

(4.7) 
- - 1/ -1 max IXn-Xinl=o(n P )a.s. 

1$t$n 

\Ye now proceed to prove our theorem. Fix e > 0 so that g is twice continuously differen­
tiable on {x: lx- ILl~ 3e}. Since N(t)-+ oo a.s., (4.7) implies that L(t)-+ 1 a.s., where 
L(t ) = I(IX(t) - ILl ~ e, IX(t) - Xi(t )l ~ e, 1 ~ i ~ _\T(t ), N(t) 2:: 2). \Ye now write 
Eo.J(t) as Eo:1(t) = Eo:J(t)lc(t) + Eo:J(t)l(t) , where l(t) = 1- L (t ). and analyze each 
piece separately. 

If IX n -ILl~ e, IX an- X nl ~ e, we can expand g(Xin) in a Taylor series about X"' 
yielding 

ng(Xn)- (n -1)g(Xin) 

=g(Xn)- (n- 1)[g(Xin)- g(Xn)] 

- 1 - - - 9
11 (~in) - - 2 

=g(Xn )- (n -1)[g (Xn)(Xin- Xn) + 
2 

(Xm - Xn)], 

where ~~n lies between X n and X in . We further note that the above expansions are uniform 
in i (i.e. max{l~in -X nl: 1 ~ i ~ n}-+ 0 a.s. as n-+ oo) by (4.7). Hence, for n sufficiently 
large, ( 4.5) implies that we have 

(4.8) o:j(n) = g(X n) + g'(X n) · ~ t (xi- X n) 
•=1 

- n(n~ 1) ~g"((;n)(X; -X.)
2
/2 

n 

= g(X n)- n(n 
1
_ 1) ~ g"(~in)(Xi- X n)

2 
/2. 

Since O:J(t) = o:j(N(t)), we obtain 

Eo:J(t)lc(t) = Eo:(t)- Eg(X(t))l(t) 

- E [ N(t)(;(t)- 1) ~ g"((;N(<j)(X;- X(t ))
2 L(t)/2] 

12 



Theorem 1 implies that Ea(t ) = o+bft+o(1/t). We will show later that EN(t)lg(X (t))ll{t) = 
o(1/t). Since g(X(t)) = 0 on {N(t) = 0}, it is clear that lg(X(t))l ~ X(t)lg(X(t))j. Thus, 
the estimate on ES(t)jg(X(t))jl{t) will show that Eg(X (t)) l (t) = o(1/t). As for the third 
term on the right-hand side of ( 4.9), note that 

N(t) 

( .V~t)) N(t~- 1 ~ g"(~iN(t})(Xi- X(t))
2 
L(t)/2 

-+ >.-1g"(J.L)E(Xt- J.L? /2 = b a.s. 

as t-+ oo. Thus, we will be able to conclude that Eo:J(t) lc(t ) = o: + o(1/t), once we show 
that the third turn, when multiplied by t , is uniformly integrable. Let M = max{ jg"(x)l : 
lx - J.Ll ~ 3€}. Then. the left-hand side of (4.10) is dominated by 

( 4.11) 

N(t) 

( 
t ) 1 "' - 2 • ~\1 N(t) N(t) ~(Xi- X(t)) I (N (t) ~ 1). 

This process clearly converges a.s. toM>. -I E(X1 - J.L)3 . We claim that it is appropriately 
uniformly integrable. using the conditional exchangeability of X 1 , •.•• X.v(t) (see Section 
2 of GLY~~ and HEIDELBERGER (1990)), we find that the expectation of (4.11) is 

( 4.12) 

To show the uniform integrability of (4.11), it suffices to show that (4.12) converges to 

.\1 >. -t E(X1 - J.L)2
• But 

E [(tjN(t))2(X1 - X(t))\ N(t) ~ 1] 

~Et [(t/N(t))\ N(t) ~ 1]· [28 E(X1 - J.L)8 + 28 E(X(t )- J.L)
8
]t, 

which is bounded in t by Corollary 3.3 and Theorem 4.2 of GLYNN and HEIDELBERGER 
(1990). Since the process appearing in (4.12) has uniformly bounded second moment, this 
implies that (4.12) does indeed converge to M>.-1E(X1- ;:f. Hence, (4.11) (and thus 
(4.10)) are also uniformly integrable. Consequently, EaJ(t)Ic(t ) = o: + o(1jt) . 

To complete the proof, we need to show that EaJ(t)l{t) = o(1/t). Now, the condi­
tional exchangeability of X 1 , . .. , XN(t) implies that each of the term:_ &,(t)(1 ~ i ~ N(t)) 
have identical distributions when conditional on N(t). Because I(t ) is symmetric in 

xl ' ... , XN(t)> we conclude that 

Since g is polynomially dominated to degree r, we find that 

(4.13) l&1{t)1Jct) ~ N(t)jg(X(t))ll(t) + N(t)jg(Xl(t))ll{t ) 

~ N(t)[2Al(t) + B(IX(t)- J.Lir + IX1(t)- 11-n. 

13 



. .\lso. we have that for q > 0, 

1\'( t ) 

l(t) ~ I (I X (t) -PI > €) + L I (IX(t) - Xi(t)l > €, N(t) 2: 2) 
t=1 

+ I (N(t) ~ 1) 
1\'( t) 

~ IX(t) -plq jqq + L IX(t) - Xi(tW /fql(N(t) 2: 2) + I (r1 + r2 > t) 
i=1 

N( t) 

~ IX (t ) - Plq I qq + 2q L I Xi - X(t)lq /N(t)q €q I (N(t) 2: 1) +I( 7"1 + 7"2 > t), 
i=1 

where we used ( 4.5) and the fact that (N (t ) - 1)- 1 ~ 2N(t)- 1 on {.Y(t) 2: 2} to obtain 
the last inequality. Similarly, we find that 

( 4.15) IX 1 (t ) - Plr ~ zriX 1 (t)- X (t)lr + 2riX(t) - Plr 
~ 22r N(t)-riX1 - X (t)lr + 2r iX(t)- Plr· 

:\ow, the conditional exchangeability of X1 , ... ,XN(t) guarantees that 

N(t) 

( 4.16) E L IXi- X (tWN(t) 1-qi(N (t ) 2: 1) 
t=1 

:\ ote that if g is polynomially dominated to degree r, then it is also polynomially dominated 
to degree r', for any r' 2: r. Hence, we have the freedom to choose r and q as large as 
we wish in (4.13)-(4.16). Combining (4.13) to (4.16), we therefore find that in order to 

conclude that E la 1 (t)l l(t) = o(1/t), it suffices to show that 

( 4.17) 

( 4.18) 

(4.19) 

EIX(t)- PIP N(t ) = o(1/t) 

EIX1 - X(t)IP N(t)2 -p = o(1/t) 

P{r1 + r2 > t} = o(1jt) 

for p sufficiently large. To obtain ( 4.17), we apply the Cauchy- Schwarz inequality, Theorem 
4.2 of GLYNN and HEIDELBERGER (1990), and Theorem 2.3 of JANSON (1983) (to 
conclude that E!N2 (t) = O(t)). Relation (4.18) is handled similarly to (4.12) (choose 
p 2: 4). Finally, to obtain (4.19), note that 

Hence, (4.17) - (4.19) are proved, showing that Ea1(t)l(t) = o(1/t) and completing the 

proof of the theorem. 
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Proof of Theorem 4. As in the proof of Theorem 3, we specialize to d = 1 in order to 
simplify the notation; the general case follows precisely the same form as the scalar proof. 

n 

Our starting point is ( 4.8). Noting that n-1 2::: g11 (~in)(X, -X n)2 --+ g11(!1)E(X1 -11)2 

i=1 

a.s. as n --+ oo, we conclude that 

( 4.20) 

as n--+ oo. \Ye now expand g(Xn) in a Taylor series about 11: 

(-!.21) 

\\'here ~n lies between X n and 11· Now, by the law of the iterated logarithm, X n - 11 = 
0 ( Jloglogn/n) a.s. Combining (4.20) and (4.21), we then get 

( -!.22) aj(n) =a+ g'(!l)(X n)- 11) + o(n11P-1
) a.s. 

as n --+ oo. \Ye now appeal to Theorem 1 of EI~:yfAHL (1989) to guarantee existence 

of a probability space (n, :F,P ) supporting r.v.'s {X~ : n ~ 1};g{Xn : n ~ 1} such that 
x; + ... +X~ -n11- = B(n) +o(n11P) a.s. (In what follows , we adopt the usual tradition of 
assuming (n, :F, P) as our original probability space; this can be done without any essential 
loss of generality.) Hence 

( 4.23) X n- 11- = B(n) + o(n1fp-l) a.s. 
n 

Combining ( 4.22) and ( 4.23) yields part i) of the theorem. 

Obtaining part ii) is now easy. Note that 

Xn(t) = \l9(~-L)B(nt)jn1 12 t + o ( n 11P-112t}-1
) a.s. 

but B(n·)fn 112 ;gB(·) and the term o ( n 1/P-112f!- 1 ) goes to zero uniformly in t ~ E, 

proving the result . Part iii) is now an immediate consequence of a standard "random time 
change" argument (see BILLINGSLEY (1968), p. 44). 
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Table 1 

).1eans and Standard Deviations in Simulations of the ).f /~1/ 1 Queue 
with p = 0.9, E[W] = 9.0 

t = 500 t = 1,000 t = 2, 500 t = 5, 000 t = 10,000 
R = 40,000 R = 20,000 R = 20,000 R = 20,000 R = 10,000 

ll'k(t) 7.319 8.049 8.614 8.796 8.891 
0.022 0.030 0.023 0.017 0018 

0,\'(t) 5.618 7.061 8.238 8.615 8.800 
0.015 0.024 0.022 0.017 0.017 

a .V(t) 5.646 7.063 8.238 8.615 8.800 

0.016 0.024 0.022 0.017 0.017 

<1.\"(t)..,.l 8.113 8.584 8.893 8.956 8.971 
0.025 0.032 0.024 0.018 0.018 

OJ(t) 6.796 8.123 8.848 8.943 8.970 
0.025 0.037 0.029 0.020 0.019 

O.k(t) 8.211 8.611 8.883 8.945 8.971 
0.032 0.038 0.026 0.018 0.018 
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Table 2 

).leans and Standard Deviations in Simulations of the Queueing ::'\etwork ).1odel 
of a Computer System E[R] = 8.0 

t = 500 t = 1,000 t = 2, 000 t = 4,000 
R = 4,000 R = 2,000 R = 1,000 R= 500 

Q' k( t ) 7.620 7.819 7.943 7.943 
0.025 0.028 0.028 0.029 

0' N( t) 6.926 7.628 7.885 7.917 
0.031 0.030 0.029 0.030 

a K'( t) 7.090 7.639 7.885 7.917 

0.028 0.029 0.029 0.030 

QN(t)+l 7.870 7.969 8.004 7.977 
0.024 0.027 0.028 0.029 

Q' J( t) 7.860 8.054 8.049 7.991 
0.046 0.041 0.033 0.031 
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Figure 1. Queueing Network Model of a Simple Computer System 
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